Journal of Organometallic Chemistry, 107 (1976) 33–48 © Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

SPECTRES DE VIBRATION DE COMPOSES ORGANIQUES DES ELEMENTS DE LA COLONNE IVB

VIII*. DERIVES ORGANOMETALLIQUES A LIAISON GERMANIUM—AZOTE: TRIALKYLGERMYL- ET BIS(TRIALKYLGERMYL)-AMINES

ANNETTE MARCHAND

Laboratoire de Chimie des Composés Organiques du Silicium et de l'Etain, associé au C.N.R.S., Université de Bordeaux I, 351, cours de la Libération, 33405 - Talence (France)

MONIQUE RIVIERE-BAUDET et JACQUES SATGE

Laboratoire de Chimie des Organominéraux, Université Paul Sabatier 118, route de Narbonne, 31077 Toulouse (France)

avec la collaboration technique de MARIE-HELENE SOULARD

Fédération des Laboratoires Organométalliques du Sud, RCP no. 384 (France)

(Reçu le 28 juillet 1975)

Summary

We have examined in the $3600-100 \text{ cm}^{-1}$ region the IR and Raman spectra of three bis(trialkylgermyl)amines $(R_3Ge)_2NR'$ (R = Me, Et; R' = H, C₆H₅), of three dialkyl(trialkylgermyl)amines $R_3GeNR'_2$ (R = Me, Et; R' = Me, n-Bu) and of two triethylgermylpyrazoles:

 $Et_3Ge - N$ (R = H, Me)

Assignments are discussed for the characteristic vibrations of these derivatives.

* Pour partie IV, voir réf. 3: pour partie V-VII voir réf. 21 et 22.

Résumé

On a examiné entre 3600 et 100 cm⁻¹ les spectres IR et Raman de trois bis(trialkylgermyl)amines $(R_3Ge)_2NR'$ (R = Me, Et; R' = H, C₆H₅), de trois dialkyl(trialkylgermyl)amines R₃GeNR'₂ (R = Me, Et; R' = Me, n-Bu) et de deux triéthylgermylpyrazoles:

$$Et_3Ge - N$$
 (R = H , Me)

Les attributions des vibrations caractéristiques de ces dérivés ont été discutées.

Introduction

Dans le cadre d'un travail d'ensemble sur les dérivés organométalliques à liaison germanium—azote [1], certains spectres infrarouges de germylamines avaient été examinés. Le problème de la détermination des fréquences de vibrations caractéristiques de la liaison Ge—N avait été abordé, comparativement à ceux des liaisons Si—N et Sn—N, mais aucune conclusion définitive n'avait pu être proposée.

Nous avons repris ce problème en effectuant une analyse détaillée de l'ensemble des spectres infrarouges et Raman des dérivés dont la liste est indiquée sur le Tableau 1, afin de préciser l'origine des bandes observées et éventuellement de généraliser le résultat à d'autres molécules renfermant un groupe Ge—N.

Les spectres infrarouges de tous les composés, en solution dans les solvants appropriés, ont été enregistrés entre 4000 et 2600 cm⁻¹ et entre 1800 et 250 cm⁻¹. Les spectres Raman des liquides purs ont également été examinés de 3600-100 cm⁻¹.

Les fréquences des bandes observées pour les composés I-VI sont données

TABLEAU 1

dans les Tableaux 2 et 3 (pour le composé V plus détaillé voir le Tableau 4): celles relatives aux trialkylgermylpyrazoles seront publiées dans un prochain article.

En raison de la forte réactivité de la liaison Ge—N et de la rapidité d'hydrolyse des amines germaniées, des précautions particulières ont été prises; les conditions expérimentales sont indiquées en détail dans la partie expérimentale.

Au cours de la discussion, nous envisagerons les vibrations des groupes méthyles puis éthyles liés au germanium. Nous poursuivrons par l'attribution des vibrations caractéristiques des bis(trialkylgermyl)amines puis par celle des dialkyl(trialkyl)germylamines et nous terminerons par l'étude des vibrations propres aux groupes amines liés au germanium.

Dans une publication ultérieure, nous déterminerons le champ de force de valence et les modes normaux de vibration du motif $C_3GeN(CH_3)_2$ afin de préciser les attributions. Nous tenterons d'établir une relation entre la structure des composés à liaison M—N de type $R_3MN(CH_3)_2$, leur champ de force et leur basicité (M = Si, Ge, Sn).

Attribution des vibrations caractéristiques des groupes méthyles liés au germanium

Les attributions des vibrations caractéristiques des groupes Me₃Ge proposées dans l'étude de dérivés linéaires [2] ont été reportées ici.

Comme le montre le Tableau 2, nous retiendrons pour les vibrations de valence $\nu(CH_3)_{Ge}$ les suites de bandes 2966 ± 8 et 2908 ± 2 cm⁻¹. Les déformations $\delta_a(CH_3)$ et $\delta'_s(CH_3)$ se situent à 1406 ± 3 cm⁻¹ et $\delta_s(CH_3)$ à 1244 ± 4 et 1237 ± 3 cm⁻¹. Nous attribuons aux rockings des CH₃ les suites à 823 ± 2, 799 ± 3, 754 ± 2 et 746 ± 3 cm⁻¹.

Attribution des vibrations caractéristiques des groupes éthyles liés au germanium

Par analogie avec les résultats obtenus pour des composés linéaires [2] ou cycliques [3] comportant deux ou trois groupes éthyles liés au germanium, nous proposons les interprétations indiquées sur le Tableau 3.

Nous attribuons la suite à $2951 \pm 6 \text{ cm}^{-1}$ à l'ensemble des vibrations antisymétriques $\nu_a(CH_3)_{C,N}$ et $\nu_a(CH_2)$. Les bandes à $2905 \pm 3 \text{ cm}^{-1}$ correspondant à $\nu_s(CH_3)_C$, nous retenons pour $\nu_s(CH_3)_N$ et $\nu_s(CH_2)$ la suite à $2928 \pm 5 \text{ cm}^{-1}$ sans les différencier. Les autres bandes observées entre 2876 et 2750 cm⁻¹ doivent provenir d'harmoniques ou de combinaisons comme dans le cas des autres dérivés en Et₃Ge.

La suite à $1424 \pm 2 \text{ cm}^{-1}$ est attribuée à $\delta(\text{CH}_2)_{\text{C}}$ car elle est absente des spectres des composés méthylés et les bandes à $1378 \pm 2 \text{ cm}^{-1}$ à $\delta_{\text{s}}(\text{CH}_3)_{\text{C,N}}$. Comme dans les travaux précédents [2,3], nous retrouvons pour le "wagging" $\omega(\text{CH}_2)$ et la torsion $t(\text{CH}_2)$, la suite à $1229 \pm 5 \text{ cm}^{-1}$, et pour les "rockings" $r(\text{CH}_2)$ celle à 696 \pm 6 cm⁻¹.

Attribution des vibrations caractéristiques des digermylamines

Dans l'étude des bis(trialkylgermyl)amines, on prévoit deux vibrations de valence, l'une symétrique v_s (GeNGe), l'autre antisymétrique v_a (GeNGe) et une

TABLEAU 2

(v en cm⁻¹; FF: très fort: F: fort; mf: moyennement fort; m: moyen, mf: moyennement faible; f: faible; ff: très faible; P: polarisée; l: large; e: épaulement; v: Frequences infrarouges et raman et attributions des bandes des composes me₃genr₁ et (me₃ge)₁nh valence; β , γ , δ : déformations; r: rocking; ω : wagging; $\nu(Bu)$: ν du butyle)

36

		Me		n-Bu	· · · · · · · · · · · · · · · · · · ·		
(Me ₃ Ge) ₂ NH (I)		Me ₃ GeN (1	(1)	Me ₃ GeN	(III)	Attributions	
IR	Raman	IR	Raman	IR	Raman		
3376 f 3009 ff	3372 ffP					ν(NH)	
2974 F	2973 mf	2968 mF	2976 fP	2958 F	2965 m	(va et vg)(CH3)Ge	
· ·		2920 m	e2926 e2926	2926 F	2934 mFP	Va(CH3)N Va(CH3)C: Va(CH3)N	
2906 mF	2907 FP	2907 mF	2910 mFP	e2906	2907 FP	vs(CH3)Ge	
		2878 mF	2884 mfP	2871 mF	2874 mFP	· 26(CH ₃)	· .
	. 1000	2848 mF	2850 f	2856 mF	2861 mP	26(CH ₃)	
0400	1 0 0 9 7	JW 9192	2820 IF	W 2182	42 0000		
1111 O 6/ 7					280312		
•		110012	ZT 10 mF		2730 f	Z 05(CH3)N	•
		e1473 f	1476 mP	1474 f		•	
		e1466 mf		1466 mF			
-		1460 m	÷			δ _n (CH ₁) _{C N} et	•
. •		e1456 m		1456 mF	1458 F	6 S(CH3)C.N	
•		1445 m		c1447	-		
.1432 f		e1434 mf	1437 mP	e1435	1437 F	-	
1407 mf	1406 mf	1407 f	1409 mP	1 407 f	1404 mf	S. at S. (CHa)~.	
		1380 f	1375 f	1376 m		5.(CH3)N C	-
				1364 mf	1366 f	δ _a (CH ₃)C	
				1337 ff	1330 f	· · · · · · · · · · · · · · · · · · ·	
			1296 f	1 100 I	1294 m	•	
	1246 FP	1248 m		e1245 m	1241 mF	b _s (CH ₃)Ge et r(CH ₃)N.(
1236 F	1237 mF	1240 mF	1241 mF	1237 mF	1234 mF	δ _s (CH ₃)Ge	
	-	1234 m					
		1218 /					
1156 mF		1167 mF		1165 m	1167 f	v _a (CNC) et r(CH ₃)N	
						111 LT \	:

I

:

:

1

										37
r(CH3)N	r(CH ₃)C,N	r(CH3)N et va(CNC)	v(Bu) v(Bu)	r(CH ₃)Ge r(CH ₃)Ge v _a (GeNGe)	و(WH) { r(CH ₃)Ge	P _A , ^{b'} s(GeC3) et P _g (GeNGe) P _g (GeC3) et µ(GeN)	ν(GeN) et ν _S (GeC ₃)	6(CNC)	δ _s (GeC ₃)	
	1108 mF c1093 ff 1061 mf	1049 m 1027 ff 956 f	897 mF 879 m 856 f	828 mf 821 mf 802 f	743 f	607 m } 596 m } 570 FFP	570 FFP 518 f 432 mf		273 mf 253 mf 247 mf 192 F 181 F	
1129 mf	1093 mf	1049 f 1024 mf	925 mf 925 mf 899 mf	821 F 797 m	748 m 729 f 646 f	605 F 596 F 567 m	567 m e430 f		•	
1136 f	1063 f	954 mfP		631 mf 825 mf		599 ml 578 mP	555 ៤ ភ្	350 f 303 f	189 F	
"1141 mf	1099 f 1060 mf	953 mF		821 FF 797 m	752 m 746 mF	606 F 600 F 578 mF 566 ff		e365 f		
				824 f		597 FFP 576 FFP	e554		275 f 268 f 193 f 193 F	151 mf
				821 F 787 FF 8767 F	e756 mF	601 F Face f	665 ff 486 ff 440 ff			

ì

952 F $r(CH_3)$ et $\nu_{d}(CNO)$ e918 866 f 844 ff 844 ff 944 ff 94 ff 702 F 690 F 690 F 690 F 642 f 702 F 690 F 642 f 702 F 7						39
962 F e918 866 f 844 ff 690 F 6573 F 6573 F 375 mf 375 mf 288 FP 288 FP 288 FP	r(CH3) et pa(CNC).	ν[[1] ν _a (GenGe) et δ(NH) r (CH ₂)G _n et ν ₄	ν ν _n (GeC ₃) ν _s (GeN) et ν _s (GeNGa) ν _s (GeN) et ν _s (GeC ₃)	v ₆ (GeC ₃) et v(GeN) ^v 16b 6(CNC)	δ(GeNC), δ(GeNGe) ν(VI) δ ₈ (GeC ₃)	
962 F 6918 866 f 844 ff 690 F 6574 F 875 m 702 F 690 F 875 m 875 m			673 F	534 FFP 375 FP	288 FP	
	962 F e918 856 f 844 ff	702 F 690 F:	585 F 574 F	e542 f 455 mf 375 m		
702 f 575 m 239 FFP 241 m		702 f	5 ,76 H	539 FFP	290 mf 241 m	
956 mf 918 m 697 F 697 F 612 mf 514 mf 514 mF	956 mf 918 m	836 F 706 F 697 F	e689 F 612 mf 578 F	536 mf 514 mF		
621 m.f 672 FF 636 F FFF 193 m			621 mf 572 FF	647 FFFP 636 FFFP	285 F 193 m	
950 f 803 F 697 F 578 F 537 mf	1096	803 F 697 F	578 F e566	14 18 19 19 19 19 19 19 19 19 19 19 19 19 19		

TABLEAU 4

FRÉQUENCES INFRAROUGES ET RAMAN ET ATTRIBUTIONS DES BANDES OBSERVÉES POUR LE COMPOSÉ (Et $_3$ Ge)₂NPh (V)

Infrarouge

3499 ff, 3418 f, 3074 mf, 3061 mf (v_2), 3024 mf, 3009 mf, 2953 FF (v_a CH₂), 2931 FF (v_s CH₃) et (v_s CH₂), 2905 F (v_s CH₃), 2871 F (δ'_s CH₃ + δ CH₂), 2824 mf (2 × δ CH₂), 2729 ff, 1615 ff, 1590 F (v_{8b}), 1585 FF (v_{8a}), 1520 ff, 1497—1493 F (v_{19a}), 1477 mF ($v_5 + v_{16b}$), 1457 m (δ'_s CH₃), 1443 ff, 1437 ff–1424 m (δ CH₂), 1376 mf (δ_s CH₃), 1360 f, 1329 ff, 1299 m (I), 1278 f (v_{3}), 1247 mf, 1288 mF ($2v_{6b}$), 1218 mF (II), 1187 mf (v_{9a}), 1166 f (v_{9b}), 1151 ff, 1115 ff, 1093 m (v_{18b}), 1069 mf (rCH₃), 1021 m (rCH₃), 1000 m (rCH₃), 1000 f (v_{12}), 972 mf (v_{CC}), 956 f, 918 m, 891 ff, 860 F (v_{17b}), 836 F (III), 706 mF (rCH₂), 689 (rCH₂), 669 f, 663 f, 612 mf (v_{6b}), 578 F (v_a GeC₃ et v'_s GeC₃), 536 mf (v_s GeC₃), 514 mF (v_{16b}).

Raman:

3056 mF (ν_2), 2950 f, 2930 F (ν_s CH₂), 2907 F (ν_s CH₃), 2873 F (comb.), 2828 f (2 × δ CH₂), 2735 f, 1588 F (ν_{8a}), 1458 mf (δ'_s CH₃), 1423 f (δ CH₂), 1379 ff (δ_s CH₃), 1299 f (I), 1217 F (II), 1185 mf (ν_{9a}), 1167 f (ν_{9b}), 1092 m (ν_{18b}), 1029 m (ν_{18a} et rCH₃), 1000 FFP (ν_{12}), 973 mf (ν_{CC}), 860 mf (ν_{17b}), 702 f (rCH₂), 638 f, 613 f (ν_{6b}), 575 m (ν_a GeC₃ et ν'_s GeC₃), 539 FFP (ν_s GeC₃), 290 mf (δ GeNGe), 241 m (VI).

vibration de déformation δ (GeNGe). On attend en outre les vibrations de valence ν (GeC₃) et les modes ν (NH), δ (NH) et γ (NH) du groupe amine.

Massol et Satgé [5] situent la vibration v_a (GeNGe) entre 860 et 850 cm⁻¹ dans une série d'alkylhydrogermylamines ($R_nH_{3-n}Ge$)₂NH et ($R_nH_{3-n}Ge$)₃N (n =1,2). Rankin [6], pour (H_3Ge)₃N, attribue à la vibration antisymétrique la bande 840 cm⁻¹ et à la vibration symétrique une absorption observée à 403 cm⁻¹ pour le dérivé en matrice d'argon. Bürger [7] retient pour &(NGeN) une absorption à 260 cm⁻¹ relevée dans Ge[N(CH₃)₂]₄.

Si nous nous reportons aux résultats obtenus pour des amines siliciées ou stanniques et indiqués dans le Tableau 5, on peut prévoir en effet pour ν_a (GeNGe) et ν_s (GeNGe) des domaines spectraux compris entre ceux du silicium et ceux de l'étain.

Vibration $v_{a}(GeNGe)$

Dans le cas des bis(trialkylgermyl)amines I et IV, nous attribuons respectivement à v_a (GeNGe) les intenses absorptions à 787 cm⁻¹ et 803 cm⁻¹ dont les

TABLEAU 5

domaines de frequences attribues a certains groupes d'atomes dans des derives silicies ou stanniques a liaisons si—n ou sn—n

Attributions	Domaines de fréquences (cm ⁻¹)						
	M = Si	M = Sn					
va(MNM)	1000-900 [4,8,9]	750-650 [11,12]					
vs(MNM)	600-500 [4,8,9]	600-400 [7,9,12]					
ν(MN)	1050-820 [4,8,10]	850-470 [8,10,12,13]					
Va(NMN)	930-700 [4,7]	950-700 [7,12]					
v _c (NMN)	800-570 [4,7]	700-500 [7.12]					

fréquences sont proches de celle de ν_a (GeOGe) située [2] à 794 cm⁻¹ dans (Me₃Ge)₂O.

Dans le cas du dérivé phénylé V, certaines vibrations [14] du noyau benzénique telles que v_1 et v_{6a} peuvent se coupler avec v_a et v_s (GeNGe) ce qui donne lieu à des vibrations d'ensemble appelées I, II, III et IV [14]. Par analogie avec les résultats des anisoles [15], nous proposerons les interprétations indiquées sur le Tableau 3.

Vibrations $v_s(GeNGe)$ et $v_s(GeC_3)$

Les vibrations symétriques ν_s (GeNGe) et ν_s (GeC₃), actives en Raman, sont attendues dans le même domaine de fréquences 600—400 cm⁻¹. Nous les étudierons donc ensemble. On observe sur le spectre de diffusion de (Me₃Ge)₂NH (Fig. 1) deux raies fortes à 597 et 576 cm⁻¹. Comme cette dernière est polarisée et a une fréquence du même ordre que celle observée à 579 cm⁻¹ dans l'oxyde de

Fig. 1. Spectres Raman observés entre 610 et 500 cm⁻¹ pour les dérivés Me₃GeNR₂ et (Me₃Ge)₂NH.

triméthylgermanium [2], nous proposons la même attribution: $\nu_s(\text{GeC}_3)$ et nous retenons pour $\nu_s(\text{GeNGe})$ la raie Raman à 597 cm⁻¹.

L'examen du spectre de diffusion de la bis(triéthylgermyl)amine V (Fig. 2) montre une intense raie polarisée à 539 cm⁻¹ que nous attribuons à $\nu_s(\text{GeC}_3)$ par analogie avec les résultats [3] de l'oxyde de triéthylgermanium (550 cm⁻¹). L'autre raie Raman située à 576 cm⁻¹ doit provenir de la vibration $\nu_s(\text{GeNGe})$; il en est de même pour la bande à 572 cm⁻¹ de IV. Dans ce dérivé, il ne nous est pas possible de choisir entre les deux maxima du doublet polarisé 547—536 cm⁻¹ pour l'attribution de $\nu_s(\text{GeC}_3)$.

Vibrations $v_a(GeC_3)$ et $v'_s(GeC_3)$

On a proposé [2,3] pour l'ensemble de ces vibrations, lors de l'étude des oxydes de trialkylgermanium, les fortes absorptions observées à 607 cm^{-1} pour le premier et 585—646 cm⁻¹ pour le second. Ce doublet proviendrait d'un cou-

Fig. 2. Spectres Raman observés entre 610 et 500 cm⁻¹ pour les dérivés Et₃GeNMe₂ et (Et₃Ge)₂NR.

Fig. 3. Spectres infrarouges observés entre 650 et 550 cm⁻¹ pour les dérivés Me₃GeNR₂ et (Me₃Ge)₂NH.

plage entre les mouvements v_a et $v'_s(GeC_3)$ et des vibrations de balancement du groupement CH_2 .

Nous retenons pour ces mouvements, dans le cas de $(Me_3Ge)_2NH$ la bande intense située à 602 cm⁻¹ (Fig. 3) et dans le cas des dérivés triéthylés IV et V, les absorptions à 574 et 578 cm⁻¹ (Fig. 4). Il ne nous semble pas qu'il y ait pour ces derniers de couplage avec $r(CH_2)$ cette vibration correspondant à la forte absorption à 697 cm⁻¹.

Vibrations δ (GeNGe)

En accord avec Bürger [7], nous attribuons au mode δ (GeNGe) les raies Raman situées à 275 (I), 285 (IV) et 290 cm⁻¹ (V).

Vibrations du groupe NH

La bande due à la vibration ν (NH), toujours de faible intensité, se situe à 3374 cm⁻¹ sur les spectres d'absorption des bis(trialkylgermyl)amines I et IV.

Par analogie avec les résultats des amines siliciées [4], on peut attribuer à la vibration de déformation $\gamma(NH)$, la bande moyenne observée à 1156 cm⁻¹ et à $\delta(NH)$, l'absorption située à 767 cm⁻¹ dans I. Pour IV, on ne note aucune bande entre 697 et 803 cm⁻¹. Cette dernière, très large, pourrait masquer une autre absorption.

Attribution des vibrations caractéristiques des trialkylgermylamines

Aucune étude spectrographique détaillée de ce type de molécules renfermant la liaison Ge-N n'a été publiée.

Fig. 4. Spectres infrarouges observés entre 750 et 500 cm⁻¹ pour les dérivés Et_3GeNMe_2 et $(Et_3Ge)_2NR$.

Les vibrations de valence $\nu(SiN)$ et $\nu(SnN)$ ont été relevées dans un très large domaine de fréquence (Tableau 4). Cependant, pour des aminosilanes de type R₃SiNH₂, certains d'entre nous [4] avaient situé $\nu(SiN)$ entre 828 et 857 cm⁻¹. Pour le diéthylaminotributylétain, nous proposions [12] pour $\nu(SnN)$ une bande vers 590 cm⁻¹ dont la répartition d'énergie potentielle calculée montrait un couplage entre $\nu(SnN)$ et $\nu_s(CNC)$.

D'autre part, la détermination de la position des vibrations v_a (GeNGe) et v_s (GeNGe) que nous venons de faire dans les bis(trialkylgermyl)amines permet de prévoir le vibrateur isolé GeN au voisinage de v_{moven} (GeNGe) soit vers 690 cm⁻¹.

Vibrations v(GeN) et $v(GeC_3)$

Les spectre Raman de Me_3GeNMe_2 (II) ne présente aucune raie entre 825 et 599 cm⁻¹.

La bande à 825 cm⁻¹ observée pour tous les composés triméthylés du germanium a été attribuée à un rocking $r(CH_3)_{Ge}$ [2].

Par analogie avec le spectre du composé I, nous affectons la bande à 599 cm⁻¹ à la vibration $\nu'_{s}(GeC_{3})$ et l'absorption à 606 cm⁻¹ à $\nu_{a}(GeC_{3})$.

Des deux raies de diffusion observées pour la germylamine II, on pourrait attribuer la plus intense (555 cm⁻¹) au mouvement $\nu_s(\text{GeC}_3)$ comme pour le composé I et retenir la fréquence 578 cm⁻¹ pour $\nu(\text{GeN})$. En fait, le calcul des modes normaux de vibration [16] montre que les vibrateurs $\nu(\text{GeN})$ et $\nu_s(\text{GeC}_3)$ sont couplés et que l'énergie potentielle est répartie entre les deux bandes de fréquences voisines.

Pour le dérivé III, on observe une absorption à 567 cm⁻¹ à laquelle corréspond une raie Raman et polarisée à 570 cm⁻¹. Nous les attribuons à l'ensemble

 ν (GeN) et ν_s (GeC₃) et nous conservons pour ν_a et ν'_s (GeC₃) les bandes vers 600 cm⁻¹ comme pour I et II.

Dans Et_3GeNMe_2 (VI), la raie Raman à 534 cm⁻¹ intense et polarisée est affectée, comme précédemment, à la vibration $v_s(GeC_3)$. L'autre raie de diffusion, de plus faible intensitée située à 573 cm⁻¹ à laquelle correspond une absorption moyenne (574 cm⁻¹) peut provenir du mode v(GeN), par analogie avec les résultats des Me₃GeNR₂. En fait, le calcul montre [16] que les élongations v(GeN) et $v_s(GeC_3)$ sont très couplées et participent aux deux modes normaux 573 et 534 cm⁻¹. On voit d'autre part, sur la Fig. 4, que pour VI le doublet 585-574 cm⁻¹ doit avoir la même origine que les bandes 578 cm⁻¹ de IV et V, soit l'ensemble $v_a(GeC_3)$ et $v'_s(GeC_3)$.

Les spectres infrarouges et Raman des triéthylgermylpyrazoles VII et VIII présentent les bandes suivantes: VII: 591 mF (IR), 590 F (R), 545 f (IR), 545 FFFP (R); VIII: 588 mF (IR), 588 F (R), 544 f (IR), 546 FFP (R) (en cm⁻¹).

Comme ces fréquences ne sont pas observées sur les spectres des pyrazoles

que nous avons également examinés, nous faisons correspondre les bandes à 590 ± 2 cm⁻¹ aux vibrations $\nu_a(GeC_3)$ et $\nu'_s(GeC_3)$ et celles à 545 ± 1 cm⁻¹ à l'ensemble $\nu_s(GeC_3)$ et $\nu(GeN)$.

Vibrations $v_{a}(CNC)$, $v_{s}(CNC)$, $\delta(CNC)$ et $\delta(GeNC)$

Dans le diméthylaminotributylétain n-Bu₃SnNMe₂ [12], le calcul des modes normaux de vibrations a montré que le mouvement ν_a (CNC) n'était pas pur mais couplé avec un rocking des CH₃ donnant lieu aux deux absorptions 1171 et 948 cm⁻¹.

L'examen des spectres infrarouges des molécules II et VI en R₃GeNMe₂ conduit à la même conclusion. On observe, en effet, deux bandes à 1167 et 953 cm⁻¹ pour II, 1171 et 952 cm⁻¹ pour VI qui subissent un abaissement de fréquences de 5 cm⁻¹ environ quand on utilise, au lieu de CCl₄, un solvant donneur de proton tel que le chlorure de méthylène. Nous les attribuons donc à l'ensemble des mouvements v_a (CNC) et r(CH₃). Pour la molécule III, l'absorption à 1165 cm⁻¹, également sensible à un effet de solvant polaire, doit correspondre à v_a (CNC). Remarquons que ces bandes sont absentes des spectres des bis(trialkylgermyl)amines, ce qui confirme notre interprétation.

La vibration $\nu_{\rm s}$ (CNC) doit donner lieu à une raie Raman polarisée. Elle a été située à 883 cm⁻¹ dans les aminotributylétains [12]. Dans le composé VI, on ne note aucune bande Raman entre 975 et 573 cm⁻¹. Nous hésitons à retenir pour $\nu_{\rm s}$ (CNC) la raie de plus haute fréquence car elle est nettement supérieure à celle du composé stannique.

Le problème étant plus compliqué pour les triméthylgermylamines, nous ne proposons aucune attribution précise. La déformation $\delta(CNC)$ a été calculée [12] à 387 cm⁻¹ pour le motif C₃SnN(CH₃)₂. Nous lui faisons correspondre pour le dérivé germanié VI les bandes à 375 cm⁻¹. Pour II et III, les faibles épaulements observés à 365 cm⁻¹ pourraient avoir la même origine.

Nous attribuons les bandes situées vers 300 cm⁻¹ pour II et III et à 288 cm⁻¹ pour VI à la vibration δ (GeNC) en accord avec la valeur calculée 288 cm⁻¹ [16].

Etude des vibrations propres aux groupes amines liés au germanium

Groupe NPh

Les vibrations du noyau phényle sont nombreuses. Pour alléger le Tableau 3, nous avons donné sur le Tableau 4 la liste des fréquences observées et leurs attributions que nous ne justifierons pas ici. Elles ont été faites essentiellement par comparaison avec les résultats des amines stanniques, de la diphénylamine et de la phényléthylamine [12].

Groupe NMe₂

Outre les vibrations v_a , v_s et δ (CNC), on attend les vibrations ν (CH₃)_N, δ (CH₃)_N, r(CH₃)_N et t(CH₃)_N.

Nous avons retenu pour $\nu_a(CH_3)_N$, l'absorption à 2955 cm⁻¹ dans II qui se retrouve dans VI en même temps que $\nu_a(CH_2)$.

Le mode $\nu_s(CH_3)_N$ a été calculé à 2934 cm⁻¹ dans C₃SnMe₂ et à 2912 cm⁻¹ dans Me₃ SiNMe₂ [16]; on peut lui faire correspondre les raies Raman à 2932 ou 2907 cm⁻¹ dans VI et l'épaulement à 2926 ou la raie à 2910 cm⁻¹ dans II.

Les vibrations de déformations $\delta(CH_3)_N$, se trouvent souvent aux même fréquences que $\delta(CH_3)_C$ comme on peut le voir sur les Tableaux 2 et 3.

On attend quatre rockings des méthyles liés à l'azote Pour les composés II et VI. Outre les bandes 1171 et 952 cm⁻¹ correspondant à l'ensemble $r(CH_3)$ et $\nu_a(CNC)$, on peut retenir les absorptions à 1248 ± 1, 1140 ± 1 et 1099 cm⁻¹ en accord avec les résultats des amines stanniques et siliciées [16].

Groupe NBu₂ et groupe pyrazole

Par analogie avec les attributions des autres dérivés et de ceux de la littérature, nous proposons l'interprétation indiquée sur le Tableau 2 dans le cas des groupes butyles.

La présence d'un noyau pyrazole dans une molécule entraîne l'apparition de nombreuses bandes sur les spectres infrarouges et Raman. Nous ne les étudierons pas ici et nous les attribuerons ultérieurement par comparaison avec les résultats des pyrazoles —NH et des pyrazoles N-silicié et N-stannique dont nous avons également enregistré les spectres.

En conclusion, cette étude montre qu'on ne peut pas caractériser les germylamines par repérage de la vibration $\nu(\text{GeN})$ car celle-ci est difficile à identifier pour différentes raisons: (1) Le domaine d'attribution de $\nu(\text{GeN})$ se situe d'après ce travail, entre 590 et 540 cm⁻¹ donc à des fréquences inférieures à celles attendues. (2) La bande due à la vibration $\nu(\text{GeN})$ n'est pas toujours très visible sur les spectres infrarouges car, souvent de faible intensité, elle est masquée par les fortes absorptions provenant de $\nu_a(\text{GeC}_3)$ et $\nu'_s(\text{GeC}_3)$. (3) Sur les spectres Raman, on note en général, deux fortes raies attribuables à l'ensemble des vibrations $\nu(\text{GeN})$ et $\nu_s(\text{GeC}_3)$ plus ou moins couplées.

Partie expérimentale

Origine des composés étudiés

Les dialkyl(trialkylgermyl)amines $R_3GeNR'_2$ sont préparées par action des chlorures de trialkylgermanium sur les aminomagnésiens [18] en mileu THF (III et VI), dans l'éther (II).

Les bis(trialkylgermyl)amines $(R_3Ge)_2NH$ ont été obtenues par aminolyse des chlorures de germanium correspondants à -60° C dans l'éther pour I [19], ou dans l'ammoniac liquide en présence de sodium (I et IV) [1].

La synthèse de V a été réalisée par action de Et_3GeCl sur $Et_3GeN(Ph)Li$ [1].

Les pyrazoles possédant la liaison Ge—N ont été préparés par transamination de R_3GeNMe_2 sur l'azole correspondant pour VIII [20]; et pour VII, par action de $(Et_3Ge)_2O$ sur deux molécules de pyrazole [17,20], ou par action du chlorure de trialkylgermanium sur le dérivé lithié du pyrazole [20].

Caractéristiques physicochimiques

Spectrographie infrarouge. Les spectres ont été enregistrés à l'aide d'un spectrographe infrarouge Leitz double faisceau, simple passage, équipé de prismes ou de réseaux [2,12].

Les amines germaniées, très hydrolysables, ont été manipulées en caisson rigoureusement desséché par de l'actigel sous atmosphère d'argon.

Selon le domaine spectral considéré, nous avons utilisé le tétrachlorure de carbone, le cyclohexane ou l'hexane comme solvants inertes et le chlorure de méthylène comme donneur de proton; tous étaient conservés sur tamis moléculaire.

Les solutions de concentration de l'ordre de 0.1 à 1 M étaient placées dans des cellules d'épaisseur 0.1 mm à faces de NaCl ou KBr.

Spectrographie Raman. Les spectres de diffusion des composés à l'état pur ou en solution dans le tétrachlorure de carbone ont été enregistrés sur un spectrographe Raman Coderg type CH-1 à source Laser He—Ne (raie excitatrice à 6328 Å) de puissance 100 mW. En général, la fente utilisée a une largeur spectrale de 4—8 cm⁻¹. Nous avons employé, pour les poudres, le spectrographe Raman Coderg PH-1 équipé d'une source Laser He—Ne de 60 mW.

Bibliographie

- 1 M. Rivière-Baudet, Thèse, Toulouse, 1972.
- 2 A. Marchand, M.T. Forel, M. Lebedeff et J. Valade, J. Organometal. Chem., 26 (1971) 69.
- 3 A. Marchand, M. Massol, J. Barrau et J. Satgé, J. Organometal. Chem., 63 (1973) 175.
- 4 A. Marchand, M.T. Forel, F. Metras et J. Valade, J. Chim. Phys., 61 (1964) 343.
- 5 M. Massol et J. Satgé, Bull. Soc. Chim. Fr., (1966) 2737.
- 6 D.W.H. Rankin, J. Chem. Soc., A. (1969) 1926.
- 7 H. Bürger et W. Sawodny, Spectrochim. Acta., A, 23 (1967) 2841.
- 8 I. Schumann-Ruidisch, W. Kalk, R.Z. Bruning, Z. Naturforsch., B, 23 (1968) 307.
- 9 U. Wannagat et F. Rabet, Inorg. Nucl. Chem. Lett., 6 (1970) 155.
- 10 E.W. Randall, J.J. Ellner et J.J. Zuckerman, Inorg. Nucl. Chem. Lett., 1 (1966) 109.
- 11 K. Sisido et S. Kozima, J. Org. Chem., 29 (1964) 907.
- 12 A. Marchand, C. Lemerle et M.T. Forel, J. Organometal. Chem., 42 (1972) 353.
- 13 T.A. George, K. Jones et M.F. Lappert, J. Chem. Soc., (1965) 2157.
- 14 C. Garrigou-Lagrange, N. Claverie, J.M. Lebas et M.L. Josien, J. Chim. Phys., 58 (1961) 559.

15 M.T. Forel, C. Garrigou-Lagrange, J. Gemin et M.L. Josien, J. Chim. Phys., 60 (1963) 1047. 16 Résultats non publiés.

17 F. Rijkens, M.J. Janssen et G.J.M. van der Kerk, Rec. Trav. Chim. Pays-Bas, 84 (1965) 1597.

- 18 J. Satgé, M. Lesbre et M. Baudet, C.R. Acad. Sci. Paris., 259 (1964) 4733.
- 19 J. Satgé et M. Baudet, C.R. Acad. Sci. Paris., Sér. C, 263 (1966) 435.
- 20 J. Elguero, M. Rivière-Baudet et J. Satgé, C.R. Acad. Sci. Paris., Sér. C, 266 (1968) 44.
- 21 A. Marchand, P. Gerval, M. Massol et J. Barrau, J. Organometal. Chem., 74 (1974) 209 et 227.
- 22 A. Marchand et P. Gerval, J. Organometal. Chem., 88 (1975) 337.